Force-velocity relationships in actin-myosin interactions causing cytoplasmic streaming in algal cells.
نویسندگان
چکیده
Cytoplasmic streaming in giant internodal cells of green algae is caused by ATP-dependent sliding between actin cables fixed on chloroplast rows and cytoplasmic myosin molecules attached to cytoplasmic organelles. Its velocity (>/=50 micro m s(-1)) is many times larger than the maximum velocity of actin-myosin sliding in muscle. We studied kinetic properties of actin-myosin sliding causing cytoplasmic streaming in internodal cell preparations of Chara corallina, into which polystyrene beads, coated with cytoplasmic myosin molecules, were introduced. Constant centrifugal forces directed opposite to the bead movement were applied as external loads. The steady-state force-velocity (P-V) curves obtained were nearly straight, irrespective of the maximum isometric force generated by cytoplasmic myosin molecules, indicating a large duty ratio of cytoplasmic myosin head. The large velocity of cytoplasmic streaming can be accounted for, at least qualitatively, by assuming a mechanically coupled interaction between cytoplasmic myosin heads as well as a large distance of unitary actin-myosin sliding.
منابع مشابه
Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity.
High velocity cytoplasmic streaming is found in various plant cells from algae to angiosperms. We characterized mechanical and enzymatic properties of a higher plant myosin purified from tobacco bright yellow-2 cells, responsible for cytoplasmic streaming, having a 175 kDa heavy chain and calmodulin light chains. Sequence analysis shows it to be a class XI myosin and a dimer with six IQ motifs ...
متن کاملAccelerated Sliding of Pollen Tube Organelles along
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethy...
متن کاملAccelerated Sliding of Pollen Tube Organelles along
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethy...
متن کاملHydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic fe...
متن کاملMyosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells.
Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 12 شماره
صفحات -
تاریخ انتشار 2003